Wenxuan Wang
Yummytanmo
Github
推荐文章
  • FoodSeg
  • ACL2025
  • CSDN
往期整理
  • 历史归档
  • 文章分类
  • 文章标签
关于我

Wenxuan Wang | 探索AI的无限可能

0
Home
技术分享
学习笔记
研究调研
课程资料
Efficient Reasoning
Category
DAST: Difficulty-Adaptive Slow Thinking for Large Reasoning Models
Efficient Reasoning
DAST: Difficulty-Adaptive Slow Thinking for Large Reasoning Models
提出了一个名为DAST的框架,它能让模型根据问题的难度自动调整推理步骤的长短,从而在不牺牲复杂任务准确性的前提下,显著提升推理效率。
RL-based Methods
推荐
Efficient Reasoning
Make Long CoT Short
L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Efficient Reasoning
L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
让推理模型能精确地自适应地控制思维链长度,优化目标: 1. 最终输出的准确率 2. 生成符合提示词中具体长度限制的推理序列
Make Long CoT Short
RL-based Methods
推荐
Reasoning
O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
Efficient Reasoning
O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
提出了一种名为O1-Pruner的微调方法,它解决了长思辨模型因推理冗长而效率低下的问题,成功地在大幅提升模型推理速度的同时,还保持乃至提升了其准确率。
RL-based Methods
推荐
Efficient Reasoning
Make Long CoT Short
你好!我是
Wenxuan Wang

Wenxuan Wang

-- 感谢您的支持 ---
 
了解更多

微信公众号

关注微信公众号了解更多

点击关注公众号
Latest posts
Lazy loaded image
DAST: Difficulty-Adaptive Slow Thinking for Large Reasoning Models
2025-6-30
Lazy loaded image
ACL2025 SLM
2025-6-17
Lazy loaded image
O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
2025-6-17
Lazy loaded image
L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
2025-6-15
Lazy loaded image
When More is Less: Understanding Chain-of-Thought Length in LLMs
2025-6-14
Lazy loaded image
Efficient Long CoT Reasoning in Small Language Models
2025-6-12
推荐
9
Efficient Reasoning
3
Make Long CoT Short
3
RL-based Methods
3
思考
2
新闻
2
课程
2
论文
2
Reasoning
2
文字
1
工具
1
开发
1
AI Infra
1
MARL
1
Python
1
CV
1
SLM
1
Background
1

文章数:
3
建站天数:
79 天
访问量:
访客数:

Powered byNotionNext 4.8.4.
2025Wenxuan Wang | 探索AI的无限可能